Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 27, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303049

RESUMO

BACKGROUND: Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model. Therefore, in this study we focused on the therapeutic efficacy of different ADSCs delivery methods in a murine model of hindlimb ischemia. METHODS: For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hindlimb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6. ADSCs were delivered directly into ischemic muscle, into the contralateral muscle or intravenously. 7 and 14 days after the surgery, the gastrocnemius and quadriceps muscles were collected for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS: Our research revealed that muscle regeneration, angiogenesis, arteriogenesis and macrophage infiltration in murine model of hindlimb ischemia differ depending on ADSCs delivery method. We have demonstrated that intramuscular method (directly into ischemic limb) of ADSCs delivery is more efficient in functional recovery after critical limb ischemia than intravenous or contralateral route. CONCLUSIONS: We have noticed that injection of ADSCs directly into ischemic limb is the optimal delivery strategy because it increases: (1) muscle fiber regeneration, (2) the number of capillaries and (3) the influx of macrophages F4/80+/CD206+.


Assuntos
Tecido Adiposo , Isquemia Crônica Crítica de Membro , Camundongos , Masculino , Humanos , Animais , Modelos Animais de Doenças , Neovascularização Fisiológica , Membro Posterior/irrigação sanguínea , Músculo Esquelético , Isquemia/terapia , Células Estromais
2.
Front Oncol ; 13: 1249524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655095

RESUMO

Introduction: Targeting tumor vasculature is an efficient weapon to fight against cancer; however, activation of alternative pathways to rebuild the disrupted vasculature leads to rapid tumor regrowth. Immunotherapy that exploits host immune cells to elicit and sustain potent antitumor response has emerged as one of the most promising tools for cancer treatment, yet many treatments fail due to developed resistance mechanisms. Therefore, our aim was to examine whether combination of immunotherapy and anti-vascular treatment will succeed in poorly immunogenic, difficult-to-treat melanoma and triple-negative breast tumor models. Methods: Our study was performed on B16-F10 melanoma and 4T1 breast tumor murine models. Mice were treated with the stimulator of interferon genes (STING) pathway agonist (cGAMP) and vascular disrupting agent combretastatin A4 phosphate (CA4P). Tumor growth was monitored. The tumor microenvironment (TME) was comprehensively investigated using multiplex immunofluorescence and flow cytometry. We also examined if such designed therapy sensitizes investigated tumor models to an immune checkpoint inhibitor (anti-PD-1). Results: The use of STING agonist cGAMP as monotherapy was insufficient to effectively inhibit tumor growth due to low levels of STING protein in 4T1 tumors. However, when additionally combined with an anti-vascular agent, a significant therapeutic effect was obtained. In this model, the obtained effect was related to the TME polarization and the stimulation of the innate immune response, especially activation of NK cells. Combination therapy was unable to activate CD8+ T cells. Due to the lack of PD-1 upregulation, no improved therapeutic effect was observed when additionally combined with the anti-PD-1 inhibitor. In B16-F10 tumors, highly abundant in STING protein, cGAMP as monotherapy was sufficient to induce potent antitumor response. In this model, the therapeutic effect was due to the infiltration of the TME with activated NK cells. cGAMP also caused the infiltration of CD8+PD-1+ T cells into the TME; hence, additional benefits of using the PD-1 inhibitor were observed. Conclusion: The study provides preclinical evidence for a great influence of the TME on the outcome of applied therapy, including immune cell contribution and ICI responsiveness. We pointed the need of careful TME screening prior to antitumor treatments to achieve satisfactory results.

3.
Biomedicines ; 11(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37371868

RESUMO

Radiotherapy (RT) is one of the main treatments for head and neck squamous cell carcinomas (HNSCCs). Unfortunately, radioresistance is observed in many cases of HNSCCs. The effectiveness of RT depends on both the direct effect inducing cell death and the indirect effect of changing the tumor microenvironment (TME). Knowledge of interactions between TME components after RT may help to design a new combined treatment with RT. In the study, we investigated the effect of RT on cell survival and cell secretion in a co-culture model of HNSCCs in vitro. We examined changes in cell proliferation, colony formation, cell cycle phases, type of cell death, cell migration and secretion after irradiation. The obtained results suggest that the presence of fibroblasts and endothelial cells in co-culture with HNSCCs inhibits the function of cell cycle checkpoints G1/S and G2/M and allows cells to enter the next phase of the cell cycle. We showed an anti-apoptotic effect in co-culture of HNSCCs with fibroblasts or endothelial cells in relation to the execution phase of apoptosis, although we initially observed increased activation of the early phase of apoptosis in the co-cultures after irradiation. We hypothesize that the anti-apoptotic effect depends on increased secretion of IL-6 and MCP-1.

4.
Anticancer Res ; 42(10): 4763-4772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191991

RESUMO

BACKGROUND/AIM: Numerous studies have demonstrated an anti-cancer action of plant-derived polyphenols. Their action is mainly related to antioxidant, anti-inflammatory, immunomodulatory and inhibitory properties. It is expected that proper composition of nutrition factors with anti-cancer activity may prevent from cancer incidence or inhibit cancer progression. The aim of the study was to investigate the anti-cancer properties of a standardized composition of compounds: trans-resveratrol, quercetin, vitamin E and selenium (Neoplasmoxan, Vebiot) in a mouse model of CT26 colorectal carcinoma. MATERIALS AND METHODS: Colorectal carcinoma cells (CT26) were introduced subcutaneously (2×105/mouse) on the back of the mice. Neoplasmoxan suspension was administered intragastrically, daily, for 21 consecutive days. In collected tumors, the area occupied by tumor blood vessels and the number of immune cells; macrophages and CD8-positive cytotoxic T lymphocytes were evaluated. RESULTS: It was observed that administration of Neoplasmoxan inhibits the growth of colorectal carcinoma in mice. Tumor volume after Neoplasmoxan administration was 40% smaller than in control groups. No overall toxicity of Neoplasmoxan was observed. The area of blood vessels in tumors of mice that received Neoplasmoxan was reduced by approximately 20%. The area occupied by macrophages increased about 60% compared to the control group. However, no increased number of CD8-positive cytotoxic T lymphocytes was observed in the group that received Neoplasmoxan. CONCLUSION: A tendency of Neoplasmoxan to inhibit the growth of colorectal carcinoma was recorded. It also seems that additional combination of the tested preparation with standard chemotherapy or radiotherapy should bring a synergistic therapeutic effect.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Selênio , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Quercetina/farmacologia , Resveratrol/farmacologia , Selênio/farmacologia , Vitamina E/farmacologia
5.
Sci Rep ; 11(1): 18335, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526531

RESUMO

Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.


Assuntos
Interleucina-12/metabolismo , Melanoma/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Interleucina-12/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
6.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439079

RESUMO

Vascular disrupting agents (VDAs), such as DMXAA, effectively destroy tumor blood vessels and cause the formation of large areas of necrosis in the central parts of the tumors. However, the use of VDAs is associated with hypoxia activation and residues of rim cells on the edge of the tumor that are responsible for tumor regrowth. The aim of the study was to combine DMXAA with radiotherapy (brachytherapy) and find the appropriate administration sequence to obtain the maximum synergistic therapeutic effect. We show that the combination in which tumors were irradiated prior to VDAs administration is more effective in murine melanoma growth inhibition than in either of the agents individually or in reverse combination. For the first time, the significance of immune cells' activation in such a combination is demonstrated. The inhibition of tumor growth is linked to the reduction of tumor blood vessels, the increased infiltration of CD8+ cytotoxic T lymphocytes and NK cells and the polarization of macrophages to the cytotoxic M1 phenotype. The reverse combination of therapeutic agents showed no therapeutic effect and even abolished the effect of DMXAA. The combination of brachytherapy and vascular disrupting agent effectively inhibits the growth of melanoma tumors but requires careful planning of the sequence of administration of the agents.

7.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605154

RESUMO

Radiotherapy (RT) is one of the major methods of cancer treatment. RT destroys cancer cells, but also affects the tumor microenvironment (TME). The delicate balance between immunomodulation processes in TME is dependent, among other things, on a specific radiation dose. Despite many studies, the optimal dose has not been clearly determined. Here, we demonstrate that brachytherapy (contact radiotherapy) inhibits melanoma tumor growth in a dose-dependent manner. Doses of 10Gy and 15Gy cause the most effective tumor growth inhibition compared to the control group. Brachytherapy, at a single dose of ≥ 5Gy, resulted in reduced tumor blood vessel density. Only a dose of 10Gy had the greatest impact on changes in the levels of tumor-infiltrating immune cells. It most effectively reduced the accumulation of protumorogenic M2 tumor-associated macrophages and increased the infiltration of cytotoxic CD8+ T lymphocytes. To summarize, more knowledge about the effects of irradiation doses in anticancer therapy is needed. It may help in the optimization of RT treatment. Our results indicate that a single dose of 10Gy leads to the development of a robust immune response. It seems that it is able to convert a tumor microenvironment into an "in situ" vaccine and lead to a significant inhibition of tumor growth.


Assuntos
Braquiterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/radioterapia , Microambiente Tumoral/imunologia , Vacinação/métodos , Animais , Apoptose , Proliferação de Células , Feminino , Imunomodulação , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Dosagem Radioterapêutica , Células Tumorais Cultivadas
8.
Eur J Pharmacol ; 883: 173354, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663541

RESUMO

Neovascularization, the process of new blood vessels formation in response to hypoxia induced signals, is an essential step during wound healing or ischemia repair. It follows as a cascade of consecutive events leading to new blood vessels formation and their subsequent remodeling to a mature and functional state, enabling tissue regeneration. Any disruption in consecutive stages of neovascularization can lead to chronic wounds or impairment of tissue repair. In the study we try to explain the biological basis of accelerated blood vessels formation in ischemic tissue after adipose tissue-derived stromal cells (ADSCs) administration. Experiments were performed on mouse models of hindlimb ischemia. We have evaluated the level of immune cells (neutrophils, macrophages) infiltration. The novelty of our work was the assessment of bone marrow-derived stem/progenitor cells (BMDCs) infiltration and their contribution to the neovascularization process in ischemic tissue. We have noticed that ADSCs regulated immune response and affected the kinetics and ratio of macrophages population infiltrating ischemic tissue. Our research revealed that ADSCs promoted changes in the morphology of infiltrating macrophages and their tight association with forming blood vessels. We assume that recruited macrophages may take over the role of pericytes and stabilize the new blood vessel or even differentiate into endothelial cells, which in consequence can accelerate vascular formation upon ADSCs administration. Our findings indicate that administration of ADSCs into ischemic muscle influence spatio-temporal distribution of infiltrating cells (macrophages, neutrophils and BMDCs), which are involved in each step of vascular formation, promoting effective ischemic tissue neovascularization.


Assuntos
Células Endoteliais/metabolismo , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Tecido Adiposo/citologia , Animais , Comunicação Celular , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Cinética , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...